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Fig 1. Simulated paths: (X1(·) , X2(·) , X3(·)) in (1).
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based on joint work [IK] with Ioannis Karatzas.
We study systems of three interacting particles, in which drifts and variances are assigned by rank. These systems are degenerate: the
variances corresponding to one or two ranks can vanish, so the corresponding ranked motions become ballistic rather than diffusive.
Depending on which ranks are allowed to “go ballistic” the systems exhibit markedly different behavior, which we study here in some
detail. Also studied are stability properties for the resulting planar process of gaps between successive ranks.
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Fig 2. Simulated paths: (X1(·) , X2(·) , X3(·)) in (2).

1. Diffusion in middle
Given real numbers δ1, δ2, δ3 and x1 > x2 > x3 , we start by con-

structing a probability space (Ω,F,P) endowed with a right-continuous
filtration F =

{
F(t)

}
0≤t<∞, to which are adapted three independent

Brownian motions B1(·), B2(·), B3(·), and three continuous processes
(X1(·), X2(·), X3(·)) that satisfy the system for i = 1, 2, 3

Xi(·) = xi +

3∑
k=1

δk

∫ ·

0

1{Xi(t)=Rk(t)} dt +

∫ ·

0

1{Xi(t)=R2(t)} dBi(t) , (1)

with the conditions
∫ ∞

0

1{Rk(t)=R`(t)} dt = 0 , ∀ k < `,

and {t ∈ (0,∞) : R1(t) = R3(t)} = ∅
with probability one. Here we denote the descending order statistics by

max
j=1,2,3

Xj(t) =: R1(t) ≥ R2(t) ≥ R3(t) := min
j=1,2,3

Xj(t) , t ∈ [0,∞),

and adopt the convention of resolving ties always in favor of the lowest
index i . The simulated sample paths are given in Fig 1.

Theorem 1. [Strong solution] The system of equations (1) admits a
pathwise unique strong solution, satisfying the above conditions. With
probability one, R1(·)−R3(·) > 0 .

Proposition 2. [Positive recurrence] Under the stability conditions

2(δ3 − δ2) + (δ1 − δ2)
− > 0 , 2(δ2 − δ1) + (δ2 − δ3)

− > 0 ,

the gap process (G(·) := R1(·) − R2(·) , H(·) := R2(·) − R3(·))
is positive-recurrent and has a unique invariant measure π with
π((0,∞)2) = 1 .

• “Two ballistic motions cannot squeeze a diffusive motion”.

• The Laplace transform of π and the basic adjoint relation that is
satisfied by π are also discussed in [IK].

2. Ballistic motion in middle
We take up the “obverse” of the three-particle system in (1), by which

for i = 1, 2, 3, we mean replacing the equations in (1) by

Xi(·) = xi +

3∑
k=1

δk

∫ ·

0

1{Xi(t)=Rk(t)} dt

+

∫ ·

0

(
1{Xi(t)=R1(t)} + 1{Xi(t)=R3(t)}

)
dBi(t)

(2)

and replacing the conditions by∫ ∞

0

1{Rk(t)=R`(t)} dt = 0 , ∀ k < ` ; LR1−R3(·) ≡ 0 , (3)

where LΞ(·) is the right local time at the origin of a continuous, non-
negative semimartingale of the form Ξ(·) = Ξ(0) + M(·) + C(·) , with
M(·) a continuous local martingale and C(·) a process of finite first
variation on compact intervals:

LΞ(·) ≡ LΞ(· ; 0) := lim
ε↓0

1

2ε

∫ ·
0

1{Ξ(t)<ε}d〈M〉(t) .

Theorem 3. On a filtered probability space (Ω,F ,P),F = {F(t)}t≥0

and with the process X(·), there exists a three-dimensional Brow-
nian motion B(·) = (B1(·), B2(·), B3(·))′ such that (Ω,F ,P), F =

{F(t)}t≥0 , (X(·), B(·)) is a weak solution for the system (2), (3).
This solution is unique in the sense of the probability distribution; thus,
X(·) has the strong MARKOV property. It is also pathwise unique and
strong, up until the first time

S := inf{t > 0 : X1(t) = X2(t) = X3(t)}
a triple collision occurs; however, both pathwise uniqueness and
strength fail after time S .
• “The two Brownian motions can eventually squeeze the ballistic mo-
tion in the middle”, and thus triple points can occur; in fact, with prob-
ability one in the case δ1 = δ2 = δ3 .
• Proof employs the excursion argument similar to [IKPY] for the
Walsh Brownian motion. The sample paths are given in Fig 2.

3. Middle diffusion, ballistic hedges,
skew-elastic collisions

We consider with δ1, δ2, δ3, x1 > x2 > x3 given real numbers, the sys-
tem of equations, first introduced and studied in [F] : for i = 1, 2, 3 .

Xi(·) = xi+
3∑
k=1

δk

∫ ·

0

1{Xi(t)=Rk(t)} dt+

∫ ·

0

1{Xi(t)=R2(t)} dBi(t)

+

∫ ·

0

1{Xi(t)=R2(t)} dLR2−R3(t) +

∫ ·

0

1{Xi(t)=R3(t)} dLR2−R3(t) .

Proposition 4. [Invariance probability measure] Under the conditions

3 δ3 > 2 δ1 + δ2 , 2 δ3 > δ1 + δ2 ,

both λ1 := 2(3δ3 − 2δ1 − δ2) , λ2 := 2(2δ3 − δ1 − δ2) are positive con-
stants and the unique invariant probability measure π for the vector
process

(
G(·) = R1(·) − R2(·), H(·) = R2(·) − R3(·)

)
of gaps is the

product of exponentials

π
(
dg, dh

)
= 4λ1 λ2 e

−2λ1 g−2λ2 h dg dh , (g, h) ∈ (0,∞)2 .
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